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Abstract. We study the influence of a possible coherent component in the boson source on the two-, three-
and n-particle correlation functions in a generalized core–halo-type boson-emitting source. In particular, a
simple formula is presented for the strength of the n-particle correlation functions for such systems. Graph
rules are obtained to evaluate the correlation functions of arbitrarily high order. The importance of an
experimental determination of the 4-th and 5-th order Bose–Einstein correlation function is emphasized.

1 Introduction

Intensity correlations were discovered first in astrophysics
by Hanbury Brown and Twiss [1], who invented this meth-
od to determine the angular diameter of main sequence
stars (HBT effect). In particle physics, intensity correla-
tions of pions were observed by Goldhaber, Goldhaber,
Lee and Pais (GGLP effect) [2]. Bose–Einstein correla-
tions are intensity correlations among identical bosons,
that are studied mainly with the purpose of reconstructing
the space-time picture of particle production. The analy-
sis of higher-order Bose–Einstein correlation functions be-
came a focal point of current research interest.

In particle physics, significant three- or higher-order
Bose–Einstein correlations have been extracted from the
data samples of the AFS [3], the NA22 [4–6] and the
UA1 collaborations [7]. These data were used to test the
possible existence of a coherent source in multi-particle
physics and to compare the correlation functions with
the strength of these correlations as predicted from the
quantum-optical (QO) formalism [8–10]. As the precision
of the measurements improved, the QO predictions with
higher-order correlations were found to be less and less
consistent with the data on third- and fourth-order Bose–
Einstein correlation functions (BECFs) [11] in (π+/K+)+
p reactions at CERN SPS. Recently, this basic QO for-
malism was shown to be insufficient to simultaneously de-
scribe the high-precision UA1 data on two- and three-
particle Bose–Einstein correlations [12].

In high-energy heavy-ion physics, the first experimen-
tal determination of the three-particle correlation func-
tion has recently been reported by the NA44 collaboration
[13–16], indicating that the genuine three-particle correla-
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tion is quite suppressed in the S + Pb collisions at CERN
SPS. Genuine three-particle correlation means the part of
the three-particle correlation that is not due to included
combinations of two-particle correlations. This suppres-
sion can be expressed as a phase factor, cos(φ), of the
three-particle correlation function, in case of totally inco-
herent particle production. In that case the phase factor
is related to an asymmetry of the particle source, that
cannot be extracted from two-particle correlations. The-
oretical estimates of this asymmetry effect on the phase
factor show very small departures from cos(φ) ≈ 1 [17–
19]. The large departure from cos(φ) = 1 found by the
NA44 collaboration, cos(φ) = 0.2 ± 0.2 [16], ought to be
due to some other mechanism. We will discuss the pos-
sibility of a partially coherent source in this Letter. The
possible existence of such an extra phase in the third- and
higher-order correlation functions was noted already e.g.
in papers by the NA22 collaboration [11], but no exper-
imental evidence has been put forward for a cos(φ) 6= 1
value in particle physics.

Theoretically Cramer and Kadija predicted up to order
6 the strength of Bose–Einstein correlations for sources
with partially coherent and incoherent components that
also included a possible contamination by mis-identified,
non-interfering particles [20]. Their formulae were obtained
in the quantum-optical formalism. Recently, Suzuki and
collaborators calculated higher-order exclusive Bose–Ein-
stein correlations from the generating-functional approach
to the quantum-optical formalism [21] for the case that the
source has M incoherent and one coherent component.

Recently, multi-particle symmetrizations up to arbi-
trarily high order were evaluated exactly by Zhang [22]
for the special case of the pion-laser model proposed by
Pratt in [23]. Surprisingly, the structure of the n-particle
inclusive correlation functions in terms of the Fourier-
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transformed inclusive emission function was found to be
the same as the structure of the n-particle exclusive cor-
relation functions in terms of the single-particle exclusive
emission function [22]. However, this result is valid only
in the case when Bose–Einstein condensation, and hence
the development of partial coherence, has not yet been
reached [24].

A simple recurrence relation was obtained for the
strength of the higher-order correlation functions of core–
halo-type systems [25]. Such systems are boson-emitting
sources where some particles come from the incoherent
center of the particle emission, which is assumed to be re-
solvable by the Bose–Einstein microscope. The rest of the
particles is assumed to come from the halo region, which
corresponds to large length scales not resolvable by inten-
sity interferometry [26,27]. In [25], a prediction was made
for the strength of third-order and arbitrary-order BECF
assuming that the core has no coherent component.

The purpose of the present Letter is to investigate the
effect of a partially coherent component in the core of
particle emission. We present a generalization of the earlier
recurrence relations in [25]; the new expressions also yield
an easy way to calculate formulae for the strength of the
n-th order correlation function with a partially coherent
and a halo component, and we apply these expressions to
the NA44 data on S + Pb collisions.

2 Basic definitions

The central assumption of the core–halo model is that
the reduction of the intercept parameter of the n-particle
BECFs be due to the presence of the long-lived resonances
[25]. This assumption was motivated by the success of fully
incoherent event generators like RQMD or VENUS in the
description of two-particle BECFs.

The emission function of the whole source can be writ-
ten as a sum of a contribution from the core and from the
halo, where the halo stands for the decay products of the
(non-resolvable) long-lived resonances. The core is indexed
with ‘c’, the halo by ‘h’. We have

S(x, k) = Sc(x, k) + Sh(x, k). (1)

In earlier studies of the core–halo model it was as-
sumed that Sc(x, k) describes a fully incoherent (thermal)
source. Now we assume that some fraction of the core
emits bosons in a coherent manner, e.g., due to the emerg-
ing formation of pion lasers, or Bose–Einstein condensates
of pions, or production of disoriented chiral condensates,
etc., so we define

Sc(x,k) = Sp
c (x,k) + Si

c(x,k), (2)

where the upper index ‘p’ stands for the coherent compo-
nent (p is for partial), and the upper index ‘i’ stands for
the incoherent component of the core.

The invariant spectrum is given by

N(k) =
∫

d4xS(x,k) = Nc(k) + Nh(k), (3)

and the core contribution is a sum of the coherent and
incoherent components:

Nc(k) =
∫

d4xSc(x,k) = Np
c (k) + N i

c(k). (4)

One can introduce the momentum-dependent core frac-
tions fc(k) and the partially coherent core fractions pc(k)
by

fc(k) = Nc(k)/N(k), (5)
pc(k) = Np

c (k)/Nc(k). (6)

The halo and the incoherent fractions fh, fi are

fh(k) = Nh(k)/N(k) = 1 − fc(k), (7)

fi(k) = N i
c(k)/Nc(k) = 1 − pc(k). (8)

Note that our definition of the momentum-dependent
partially coherent core fraction, pc(k), should be clearly
distinguished from the chaoticity p of Weiner [28], de-
fined as p = 〈nchao〉/〈ntot〉, the ratio of the mean num-
ber of particles from the chaotic source to the mean total
multiplicity. If we neglect the momentum dependence of
fc(k) and pc(k), the core fraction and the partially co-
herent core fraction, formally one obtains p = 1 − pcfc.
However, we distinguish the resolvable intercept λ∗ from
the exact intercept λxct, in contrast to [28]. For exam-
ple, in the case of two-particle correlations of core-halo
type systems, λ∗,2 = f2

c [(1 − pc)2 + 2pc(1 − pc)], while
λxct,2 = λ∗,2 + (1 − fc)2 + 2fc(1 − fc). In the case of the
quantum optical formalism without long lived resonances
λQO

2 = 2p(1 − p) + p2 = 1 − (1 − p)2.

3 The strength
of the n-particle correlations λ∗,n

We define the n-particle correlation function by

Cn(1, 2, . . . , n) = Cn(k1,k2, . . . ,kn)

=
Nn(k1,k2, . . . ,kn)

N1(k1)N1(k2) . . . N1(kn)
, (9)

=
Nn(1, 2, . . . , n)

N1(1)N1(2) . . . N1(n)
, (10)

where a symbolic notation for ki is introduced; only the
index of k is written out in the argument. From now
on, we shall consistently apply this notation for the ar-
guments of the various functions of the momenta, i.e.,
f(ki,kj , . . . ,km) is symbolically denoted by f(i, j, . . . , m).

We find that the intercept of the n-particle correla-
tion function (extrapolated from finite relative momenta
to zero relative momentum) is given by the following for-
mula:

Cn(ki = kj ,∀i, j) = 1 + λ∗,n (11)

= 1 +
n∑

j=2

(
n
j

)
αjf

j
c

[
(1 − pc)j + jpc(1 − pc)j−1] ,
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where αj counts the number of fully mixing permutations
of j elements. This can be calculated from a simple recur-
rence, as obtained in [25].

Note that the equations of [25,26] were given for a fully
incoherent core, and they are modified above for an addi-
tional coherent component in a straightforward manner.
In general, terms proportional to f j

c in the incoherent case
shall pick up an additional factor [(1−pc)j+jpc(1−pc)j−1]
in case the core has a coherent component. This extra fac-
tor means that either each of the j particles is from the
incoherent part of the core, or one of them can come from
the coherent, while the remaining j − 1 particles must be
from the incoherent part. If two or more particles come
from the coherent component of the core, the contribu-
tion to the intensity correlations vanishes as the intensity
correlator for two coherent particles is zero.

Let us indicate the number of permutations that com-
pletely mix exactly j non-identical elements by αj . There

are exactly
(

n
j

)
different ways to choose j different el-

ements from among n different elements. Since all the n!
permutations can be written as a sum over the fully mix-
ing permutations, the counting rule yields a recurrence
relation for αj [25]:

αn = n! − 1 −
n−1∑
j=1

(
n
j

)
αj . (12)

The first few values of αj are given by

α1 = 0, (13)
α2 = 1, (14)
α3 = 2, (15)
α4 = 9, (16)
α5 = 44, (17)
α6 = 265. (18)

We have the following explicit expressions for the first few
intercept parameters:

λ∗,2 = f2
c [(1 − pc)2 + 2pc(1 − pc)], (19)

λ∗,3 = 3f2
c [(1 − pc)2 + 2pc(1 − pc)]

+2f3
c [(1 − pc)3 + 3pc(1 − pc)2], (20)

λ∗,4 = 6f2
c [(1 − pc)2 + 2pc(1 − pc)]

+8f3
c [(1 − pc)3 + 3pc(1 − pc)2]

+9f4
c [(1 − pc)4 + 4pc(1 − pc)3], (21)

λ∗,5 = 10f2
c [(1 − pc)2 + 2pc(1 − pc)]

+20f3
c [(1 − pc)3 + 3pc(1 − pc)2]

+45f4
c [(1 − pc)4 + 4pc(1 − pc)3]

+44f5
c [(1 − pc)5 + 5pc(1 − pc)4]. (22)

In the above equations, the effective intercept parameters,
the core fraction and the partially coherent fraction are
evaluated at a mean momentum K, λ∗,n = λ∗,n(K), fc =
fc(K) and pc = pc(K).

4 The n-body correlation function

Let us give the closed form for the full correlation function
for arbitrarily high orders of n, generalizing the results of
[25] for an additional partially coherent component in the
source.

Let ρ(n) stand for those permutations of (1, . . . , n) that
mix all the numbers from 1 to n and let us indicate by ρi

the value which is replaced by i in a given permutation
belonging to the set of permutations ρ(n). (A superscript
is the index to a set of permutations, a subscript stands
for a given value.) Then we have ρi 6= i for all values of
i = 1, . . . , n.

If the partially coherent component is vanishing, the
general expression for the n-particle inclusive correlation
function Cn(1, . . . , n) was given in [25] as

Cn(1, . . . , n) = 1 +
n∑

j=2

n ′∑
i1,...,ij=1

∑
ρ(j)

j∏
k=1

fc(ik)s̃c(ik, iρk
).

(23)

Here
∑′ indicates that the summation should be taken

over those sets of values of the indices that do not contain
any value more than once, and the normalized Fourier-
transformed emission function of the core is

s̃c(i, j) =
S̃c(i, j)
S̃c(i, i)

; (24)

s̃c(i, j) = s̃∗
c(j, i)

S̃c(j, j)
S̃c(i, i)

6= s̃∗
c(j, i). (25)

In the above equations, the tilde denotes Fourier trans-
formation over the relative momenta,

S̃c(l, m) =
∫

d4x exp[i(kl − km) · x]Sc

(
x,

kl + km

2

)
,

(26)

and similar expressions hold for the coherent and the in-
coherent components of the core. 1

The expression in (23) is valid not only for the case
when exactly n bosons are in the system and full sym-
metrization is performed. Cn(1, 2, . . . , n) stands for the n-
particle exclusive correlation function and S̃c(i, j) stands
for the Fourier-transformed core-emission function with-
out modifications due to multi-particle symmetrization
[22,24]. In addition, (23) is also valid when the only source
of correlations between the pions is due to Bose–Einstein
symmetrization, the number of pions is randomly varying
from event to event, and Cn(1, 2, . . . , n) is interpreted as
the n-particle inclusive correlation function [22,24], and
S̃c(i, j) includes all higher-order symmetrization effects.

1 Note that with this definition the normalized Fourier-
transformed emission function becomes asymmetric under the
exchange of the arguments and complex conjugation, although
the relationship S̃c(i, j) = S̃∗

c (j, i) is satisfied.
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However, (23) is valid only if the core has no partially
coherent component. If a coherent component is present,
one can introduce the normalized incoherent and partially
coherent core fractions by

s̃i
c(j, k) =

S̃i
c(j, k)

S̃i
c(j, j)

, (27)

s̃p
c (j, k) =

S̃p
c (j, k)

S̃p
c (j, j)

, (28)

and we obtain

Cn(1, . . . , n) = 1 +
n∑

j=2

n ′∑
m1,...,mj=1

∑
ρ(j)

(29)

×
{

j∏
k=1

fc(mk)[1 − pc(mk)] s̃i
c(mk, mρk

)

+
j∑

l=1

fc(ml)pc(ml) s̃p
c (ml, mρl

)

×
j∏

k=1,k 6=l

fc(mk)[1 − pc(mk)] s̃i
c(mk, mρk

)


 .

This expression contains phases in the Fourier-transformed
normalized source distributions. Actually, two (momen-
tum-dependent) phases are present: one denoted by
φi(km,kn) in the Fourier-transformed normalized inco-
herent core-emission function, s̃i

c(km,kn) and another in-
dependent phase denoted by φc(km,kn) is present in the
Fourier-transformed normalized coherent core-emission
function, s̃p

c (km,kn). One can write

s̃i
c(km,kn) = |s̃i

c(km,kn)| exp[iφi(km,kn)], (30)
s̃p
c (km,kn) = |s̃p

c (km,kn)| exp[iφp(km,kn)]. (31)

The shape of both the coherent and the incoherent com-
ponents is arbitrary in these equations, but should corre-
spond to the space-time distribution of the particle pro-
duction. If the variances of the core are finite, the emis-
sion functions are usually parameterized by Gaussians. If
the core distributions have power-law-like tails, as in the
case of the Lorentzian distribution [29], then the Fourier-
transformed emission functions correspond to exponen-
tials or to power-law structures [30]. For completeness,
we list these possibilities below:

|s̃i
c(km,kn)|2 = exp(−R2

i Q
2
mn) or (32)

|s̃i
c(km,kn)|2 = exp(−RiQmn) or (33)

|s̃i
c(km,kn)|2 = ai(RiQmn)bi etc. . . . , (34)

|s̃p
c (km,kn)|2 = exp(−R2

pQ
2
mn) or (35)

|s̃p
c (km,kn)|2 = exp(−RpQmn) or (36)

|s̃p
c (km,kn)|2 = ap(RpQmn)bp etc. . . . (37)

In the above equations, the subscripts ‘i’ and ‘p’ index the
parameters belonging to the incoherent or to the partially
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Fig. 1. Allowed regions for possible values of the fc core frac-
tion and the pc partially coherent fraction are evaluated on
the 2σ level from the intercept of the second-order and the
third-order correlation functions, λ∗,2 and λ∗,3

coherent components of the core, and Qmn stands for cer-
tain experimentally defined relative momentum compo-
nents determined from km and kn.

A straightforward counting yields that in the limiting
case when all momenta are equal, the simple formula of
(11) follows from the shape of the n-particle Bose–Einstein
correlation functions of (29), as s̃i

c(i, i) = s̃p
c (i, i) = 1.

5 Application to three-particle
correlation data

As an application of the above formalism, we attempt to
determine the core fraction fc and the partially coherent
fraction pc from the strength of the NA44 two- and three-
particle correlation functions, λ∗,2 and λ∗,3, in the CERN
SPS S + Pb reactions. The two experimentally determined
values are λ∗,2 = 0.44 ± 0.04 and λ∗,3 = 1.35 ± 0.12 (sta-
tistical errors only). 2 Figure 1 illustrates the 2σ contour
plots in the (fc, pc) plane, as determined from the experi-
mental values of λ∗,2 and λ∗,3.

The overlap area in Fig. 1 shows that a large range of
(fc, pc) is allowed that describe simutaneously the strength
of the two- and three-particle correlation functions within
two standard deviations. Thus, neither the fully incoher-
ent, nor the partially coherent source picture can be ex-
cluded at present.

2 Coulomb corrections are large in heavy-ion collisions and
the value of λ∗,3 was determined with the help of a newly devel-
oped Coulomb three-particle wave-function integration method
described in [32].
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Fig. 2. Graphs determining the second- and the third-order correlation function for partially coherent core–halo sources

Table 1. Evaluation of the strength of the higher-order corre-
lation functions, λ∗,n, for various core fractions and partially
coherent fractions allowed by NA44 two- and three-particle
correlation data

fc p λ∗,2 λ∗,3 λ∗,4 λ∗,5

0.60 0.00 0.36 1.5 5.1 17.2
0.70 0.50 0.37 1.4 4.3 11.9
1.00 0.75 0.44 1.6 4.3 10.5

Now we can predict the intercept of higher-order cor-
relations to see if they become more sensitive to the pres-
ence of a partially coherent source, or not. In Table 1 we
have evaluated the the λ∗,2, λ∗,3, λ∗,4, λ∗,5 values for some
cases in the overlap region. We find that λ∗,5 is almost a
factor of 2 larger for a completely incoherent source than
for a partially coherent source with no halo component,
although within the experimental errors both cases de-
scribe λ∗,2 and λ∗,3. This is in agreement with Cramer
and Kadija, who have pointed out that for higher values
of n the difference between a partially coherent source and
the fully incoherent source will become larger and larger
[20].

The results presented here imply that the measure-
ment of higher-order correlations, namely to 5-th order, is
necessary to determine the value of the degree of partial
coherence of the source in this reaction.

6 Summary and conclusions

In summary, we have found a simple generalization of the
core–halo model for the case when the core has a partially

coherent component. The strength of the n-particle corre-
lation function can be evaluated for an arbitrary value of
n with the help of a simple recurrence formula.

The shape of the n-particle Bose–Einstein correlation
function was determined in terms of the Fourier-trans-
formed emission function of the incoherent and the par-
tially coherent component of the source. The graph rules
for the calculation of these functions are summarized and
illustrated graphically in Appendix A.

We found that the strengths of the second- and the
third-order Bose–Einstein correlation functions in the
NA44 S + Pb reaction at CERN SPS can be accommo-
dated simultaneously both in a fully incoherent core pic-
ture (pc = 0) with a halo fraction of fc = 0.6 as well as
in a partially coherent core picture that has no halo com-
ponent, pc = 0.75 and fc = 1. However, the strength of
the fourth- and fifth-order correlation functions is shown
to be quite different in the two scenarios.
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Appendix A: Graph rules

A straightforward calculation of the higher-order Bose–
Einstein correlations for a partially coherent core–halo
type of systems is possible with the help of the set of graph
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Fig. 3. Graphs determining the fourth-order correlation function for partially coherent core–halo sources

rules that we determine below. Although the graphs we de-
scribe are similar to those of [21], the rules are different as
we have multiplicative factors for each vertex (they carry
one momentum label each) and for each line (that con-
nect two vertices, hence they carry two momentum labels
each).

Figures 2 and 3 graphically illustrate the calculation
rules of the contributions of the incoherent and coher-
ent core components to the n-particle correlation function
Cn(k1, . . . ,kn) for the cases n = 2, 3 and 4, respectively.
Circles can be either open or filled. Each circle carries
one label (e.g. j) standing for a particle with momentum
kj . Filled circles represent the incoherent core component,
yielding a factor fc(j)[1−pc(j)], whereas open circles cor-
respond to the coherent component of the core, a factor
fc(j)pc(j), as defined in (6) and (8) and as also shown in
Fig. 2.

For the n-particle correlation function, all possible j-
tuples of particles have to be found. Such j-tuples can

be chosen in
(

n
j

)
different manners. In such a j-tuple,

either each circle is filled, or the circle with index k is open
and the other j − 1 circles are filled, which gives j + 1
different possibilities. All the permutations that fully mix
either j = 2, or 3, . . . , or n different elements have to
be taken into account for each choice of filling the circles.
The number of different fully mixing permutations that
permute the elements i1, . . . ij is given by αj and can be
determined from the recurrence relation (12).

Lines connecting two circles (or vertices) are denoted,
e.g., by (i, j). The lines stand for factors that depend
both on ki and on kj . Full lines represent incoherent–
incoherent particle pairs, and correspond to a factor of
s̃i
c(i, j). Dashed lines correspond to incoherent–coherent
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pairs, and carry a factor of s̃p
c (i, j). The lines are oriented;

they point from circle i to circle j, corresponding to the
permutation that replaces element j by element i. Dashed
lines must start from an open circle and point to a filled
circle.

All possible graphs must be drawn that are in agree-
ment with the above rules. The result corresponds to the
fully mixing permutations of all possible j-tuples (j =
2, . . . n) chosen in all possible manners from the elements
(1, 2, . . . , n).

Each graph adds one term to the correlation function,
given by the product of all the factors represented by the
circles and lines of the graph. Note that the directions of
the arrows matter, as reflected by the inequality in (25).
The correlation function C(1, . . . , n) is given by 1 plus the
sum of all the graphs.

Finally, we note that for the n-particle cumulant cor-
relation function, n circles, representing the n particles,
should be connected in all possible manners correspond-
ing only to the fully mixing permutations of the elements
(1, . . . , n). Disconnected graphs do not contribute to the
cumulant correlation functions, as they correspond to per-
mutations that either do not mix all of the n elements or
can be built up from two or more independent permuta-
tions of certain subsamples of the elements (1, 2, . . . , n).
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31. S. Nickerson, T. Csörgő, D. Kiang, Phys. Rev. C 57, 3251

(1998)
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